61 research outputs found

    Acoustic analysis of an exhaust manifold by Indirect Boundary Element Method

    Get PDF
    The present work is aimed at the development of a numerical procedure, based on the usage of the Boundary Element Method (BEM) as implemented in the software LMS Virtual.Lab, for the vibro-acoustics analysis of an exhaust manifold. The manifold vibrations are induced by two different ways: engine vibrations (transmitted to the manifold surfaces) and turbulences generated by the air flow in the exhaust system. The indirect BEM (IBEM), with a variational solution algorithm, is adopted to assess the exhaust manifold acoustic radiation. The modal analysis of the acoustic cavity is realized by the Finite Element Method (FEM) and the corresponding eigenfrequencies compared with those obtained by an IBEM forced response analysis and by experimental measurement. Experimental acoustic pressures at the manifold inlet and outlet are measured in anechoic room in order to compare with corresponding numerical predictions and assess the accuracy level obtained

    BEM Simulation and Experimental Test of a FML Full Scale Aeronautic Panel Undergoing Biaxial Static Load

    Get PDF
    This paper concerns the numerical and experimental characterization ofthe static and fatigue strength of a flat stiffened panel, designed as a fiber metal laminates (FML) and made of Aluminum alloy and Fiber Glass FRP. The panel is full scale and was tested under both static and fatigue biaxial loads, applied by means of an in house designed and built multi-axial fatigue machine. The static test is simulated by the Boundary Element Method (BEM) in a two-dimensional approach (only allowance for membrane stresses). The strain gauge outcomes are compared with corresponding numerical results, getting a satisfactory correlation. After the static test, an initial notch is created in the panel and the aforementioned biaxial fatigue load is applied, causing a crack initiation and propagation; the related experimental initiation times and crack growth rates are provided

    FEM and BEM Analysis of a Human Mandible with Added Temporomandibular Joints

    Get PDF
    Mathematical modelling of human mandible and its temporomandibular joints (TMJs) is one of the most important steps for developing a powerful forecasting tool to analyse the stress/strain behaviour of a human masticatory system under occlusal loads. In this work the structural behaviour of a mandible with articular discs, undergoing a unilateral occlusion, is numerically analysed by means of both Finite Element Method (FEM) and Boundary Element Method (BEM). The mandible is considered as completely edentulous and its anisotropic and non-homogeneous bone material behaviour is modelled. The material behaviour of the articular discs was assumed to be either elastic or hyper-elastic. The loads applied to the mandible are related to the active muscle groups during a unilateral occlusion. The results of FEM and BEM analyses are presented mainly in terms of stress distribution on the mandible and on the articular discs. Due to the uncertainty in the determination of the biological parameters, a sensitivity analysis is provided, which demonstrates the impact of the variation of articular disc stiffness and TMJ friction coefficient on the mandible stress peaks and on the occlusal loads (for a given intensity of muscle loads). Moreover a comparison between the effectiveness of the BEM and FEM numerical approaches on this kind of problem is provided

    FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading

    Get PDF
    An edge crack propagation in a steel bar of circular cross-section undergoing multiaxial fatigue loads is simulated by Finite Element Method (FEM). The variation of crack growth behaviour is studied under axial and combined in phase axial+torsional fatigue loading. Results show that the cyclic Mode III loading superimposed on the cyclic Mode I leads to a fatigue life reduction. Numerical calculations are performed using the FEM software ZENCRACK to determine the crack path and fatigue life. The FEM numerical predictions have been compared against corresponding experimental and numerical data, available from literature, getting satisfactory consistencyN/

    Hybrid technique to assess the fatigue performance of multiple cracked FSW joints

    Get PDF
    In this paper a numerical-experimental procedure useful to numerically assess the fatigue performance of friction stir welded aluminium joints is presented. The impact of manufacturing residual stresses on crack propagation in the joint driven by a remote fatigue load can be predicted. The proposed sequential procedure starts with the experimental residual stress assessment by the contour method and proceeds through the multiple crack growth simulation by the Dual Boundary Element Method. In the frame of Linear Elastic Fracture Mechanics, the superposition principle is invoked to provide the mathematical foundation supporting the proposed modelling strategy. In order to validate the proposed procedure, simple specimens are fatigue tested, obtaining multiple crack propagation scenarios that are monitored, in order to compare experimental and predicted crack growth rate

    Crack propagation calculations in aircraft engines by coupled FEM-DBEM approach

    Get PDF
    New generation jet engines are subject to severe reduced fuel consumption requirements. This usually leads to thin components in which damage issues such as thermomechanical fatigue, creep and crack propagation can be quite important. The combination of stresses due to centrifugal loads and thermal stresses usually leads to mixed-mode loading. Consequently, a suitable crack propagation tool must be able to predict mixed-mode crack propagation of arbitrarily curved cracks in three-dimensional space. To tackle this problem a procedure has been developed based on a combined FEM (Finite Element Method) - DBEM (Dual Boundary Element Method) approach. Starting from a three-dimensional FEM mesh for the uncracked structure a subdomain is identified, in which crack initiation and propagation are simulated by DBEM. Such subdomain is extracted from the FEM domain and imported, together with its boundary conditions (calculated by a previous thermal-stress FEM analysis), in a DBEM environment, where a linear elastic crack growth calculation is performed. Once the crack propagation direction is determined a new crack increment can be calculated and for the new crack front the procedure can be repeated until failure. The proposed procedure allows to also consider the spectrum effects and the creep effects: both conditions relieve residual stresses that the crack encounters during its propagation. The procedure has been tested on a gas turbine vane, getting sound results, and can be made fully automatic, thanks to in house made routines needed to facilitate the data exchange between the two adopted codes

    Stress Analysis of an Endosseus Dental Implant by BEM and FEM

    Get PDF
    In this work the Boundary Element Method (BEM) and the Finite Element Method (FEM) have been used for an elastic-static analysis of both a Branemark dental implant and a generic conic threaded implant, modelled either in the complete mandible or in a mandibular segment, under axial and lateral loading conditions. Two different hypotheses are considered with reference to degree of osteo-integration between the implant and the mandibular bone: perfect and partial osteointegration. The BEM analysis takes advantage of the submodelling technique, applied on the region surrounding the implant. Such region is extracted from the overall mandible and the boundary conditions for such submodel are obtained from the stress analysis realised on the complete mandible. The obtained results provide the localisation of the most stressed areas at the bone-implant interface and at the mandibular canal (containing the alveolar nerve) which represent the most critical areas during mastication. This methodology, enriched with the tools necessary for the numerical mandible reconstruction, is useful to realise sensitivity analysis of the stress field against a variation of the localisation, inclination and typology of the considered implant, in order to assess the optimal implant conditions for each patient under treatment. Due to the high flexibility in the pre- and post-processing phase and accuracy in reproducing superficial stress gradients, BEM is more efficient than FEM in facing this kind of problem, especially when a linear elastic constitutive material law is adopted

    FEM sensitivity analyses on the stress levels in a human mandible with a varying ATM modelling complexity

    Get PDF
    Abstract: In this work the structural behaviour of a mandible considering a unilateral occlusion is numerically analysed by means of the Finite Element Method (FEM). The mandible, considered as completely edentolous, is modelled together with its articular disks, whose material behaviour is assumed as elastic or hyper-elastic. The mandible model is obtained by computer tomography scans. The anisotropic and non homogeneous bone material behaviour is considered and the loads applied to the mandible are those related to the active muscle groups during unilateral occlusion. The results of FEM analysis are presented mainly in terms of stress distribution on the mandible. Because of uncertainty on the determination of the adopted parameters, a sensitivity analysis is provided, showing the way in which the variation of articular disc stiffness and temporomandibular joint friction coefficient has an impact on the mandible stress peak and occlusal force

    MSD Crack propagation on a repaired aeronautic panel by DBEM, Advances in Engineering Software

    No full text
    This paper focuses on the use of the Dual Boundary Element Method (DBEM), as implemented in a commercial code (BEASY), to investigate the damage tolerance performance of a riveted repair flat aeronautic panel, realised and tested in the context of the European project ''IARCAS'' (VI framework). Such panel is assembled in such a way to simulate the in service repairs, with doublers riveted over corresponding cut-out. The panels, repair patches and rivets are modelled in a two-dimensional analysis with no allowance for out-of-plane bending, with edge-cracks initiated from some skin rivet holes and growing due to fatigue load. In the model, the layers representative of each component are overlapped but distinct, providing no allowance for the existing offset. The two-dimensional approximation for this problem is not detrimental to the accuracy of numerical-experimental correlation, so it turn out to be useful to study varying repair configurations, where reduced run times and a lean pre-processing phase are prerequisites

    Robust design of a polygonal shaft-hub coupling

    Get PDF
    In this work, the Taguchi method is applied for the optimal choice of design parameter values for a polygonal shaft-hub coupling. The objective is to maximize a performance function, minimizing, at the same time, its sensitivity to noises factors (robust design). The Design of Experiments (DoE) is adopted to set up a plan of numerical experiments, whose different configurations are simulated using the Boundary Element Method (BEM)
    • …
    corecore